
Possible origin of power-law behavior inn-tuple Zipf analysis

András Czirók,1,2,* H. Eugene Stanley,1 and Tama´s Vicsek2
1Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215

2Department of Atomic Physics, Eo¨tvös University, Budapest, Puskin utca 5-7, 1088 Hungary
~Received 27 October 1995!

In n-tuple Zipf analysis, ‘‘words’’ are defined as strings ofn digits, and their normalized frequency of
occurrencev is measured for a given ‘‘text’’~sequence of digits!. In the case of various non-Markovian
sequences, the probability density of the frequenciesP(v) has a power-law tail. Here we argue that a broad
class of unbiased binary texts exhibiting anonexponentialdistribution of cluster sizes can indeed yield a
power-law behavior ofP(v), where we define clusters to be strings of identical digits. We support this result
by numerical studies of long-range correlated sequences generated by three different methods that result in
nonexponential cluster-size distribution: inverse Fourier transformation, Le´vy walks, and the expansion-
modification system. Our calculations shed light on the possible connection between the Zipf plot and the
non-Markovian nature of the text: as the long-range correlations become dominant, the probability of the
appearance of long clusters is increased, leading to the observed ‘‘scaling’’ in the Zipf plot.@S1063-
651X~96!08006-3#

PACS number~s!: 87.10.1e, 02.50.2r

Recently Zipf and relatedn-gram entropy analysis@1–3#
have been applied to various complex signals or ‘‘texts’’
@4–10#. This kind of measurement was originally introduced
in the context of natural languages and is performed by cal-
culating the normalized frequency of occurrencev of each
word in a given text. By sorting the words according to their
frequency, a rankR can be assigned to each word, with
R51 being the most frequent,R52 the second most fre-
quent, and so on.

For natural languages thev(R) function can be well ap-
proximated by a power law with an exponentz close to one:

v;R2z. ~1!

The Zipf functionv(R) is closely related to a quantity that
does not require the concept of ranking, the probability den-
sity of the word frequenciesP(v), whereP(v)dv is pro-
portional to the number of words occurring with a frequency
in the interval @v,v1dv#. For a given frequencyv, the
rank R can be calculated as the total number of words oc-
curring more frequently thanv:

R~v!;E
v

`

P~v8!dv8. ~2!

Thus the observation of power-law Zipf plot is equivalent to
the presence of a power-law tail inP(v) @11#.

If—unlike in the case of natural languages—the basic
units are not defined, it is of interest to modify the Zipf
analysis by defining a ‘‘word’’ to be ann-digit string of the
text. To carry out this ‘‘n-tuple Zipf’’ analysis, a window of
length n is moved along the sequence, one character at a
step, and we record the occurrence of eachn-tuple. In the
case of long, unbiased sequences where each symbol is an
independent random variable, eachn-tuple is expected to

occur with the same frequency, sov(R) is constant andz
vanishes. However, in many cases of interest a power-law
Zipf plot ~sometimes called a ‘‘linguistic feature’’@1,5#! is
observed. So far, the exact origin of this ‘‘scaling’’ behavior
has been puzzling, although there have been indications that
it can be related to the presence of long-range correlations in
the texts@11#. On the other hand, the power-law Zipf plot
cannot beequivalentto the presence of long-range correla-
tions, as mixing the order of the nonoverlappingn-tuples
eliminates the correlations on length scales larger thann but
does not change the frequencies of these nonoverlapping
words. According to numerical tests, this mixing procedure
also does not alterz if we count the words by shifting the
window by single digits, as we defined above.

To interpret results obtained by Zipf and other related
statistical methods such asn-gram entropy, the general dif-
ficulty is that we must take into account complex features of
the text such as long-range correlations@12#. Thus the basic
approaches that characterize the sequence by either symbol
frequencies or first order Markovian probabilitiesrxy ~denot-
ing the conditional probability that a digity follows a digit
x) are often not sufficient. One possibility to better capture
the complexity is to work with higher order conditional prob-
abilities, but they are rather difficult to obtain both empiri-
cally and theoretically@13#.

Here we introduce asimpleralternative. Suppose that the
alphabet~set of symbols in the sequence! consists of only
two elements. Then the text can be considered as built up by
consecutiveclustersof zeros and ones, where the clusters are
defined as identical consecutive digits@14#. An unbiasedse-
quence can be characterized by a single cluster-size distribu-
tion function Pk , wherePk denotes the probability that a
randomly selected cluster~consisting of either type of sym-
bol! consists ofk digits ((k.0Pk51). In the more general
case of a biased sequence, for each kind of digit a different
distribution function can be assigned, which complicates the
calculations but does not change our conclusions.Pk con-
tains considerably more information than ther00 and r01*Electronic address: czirok@hercules.elte.hu
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conditional probabilities@15#, but as we do not take into
account the correlations among different clusters, still does
not have the ‘‘full’’ characterization of the sequence. Here
we point out that in many cases the Zipf plot is strongly
related toPk : for a broad class of texts the nonexponential
distribution of the cluster sizes can account for the observed
power lawv(R).

The cluster-size distribution functionPk enables us to es-
timate the frequencyv of a givenn-tuple consisting ofm
clusters (m-cluster word! with lengths l 1 ,l 2 , . . . ,l m

(( i51
m l i5n). Since we assume independence of the clusters,

the probability of the event that a cluster of lengthj follows
a cluster of lengthk is given byPjPk . Thus for largen and
m the frequency of a givenm-cluster word is estimated by

lnv5(
i51

m

lnPl i, ~3!

where we neglected boundary effects: the actual length of the
first and last cluster can be longer thanl 1 and l m , respec-
tively @16#.

First, we consider two cases:~i! If the digits of an unbi-
ased sequence are independent random variables, then
Pk51/2k, as all the lastk21 digits must be identical to the
first digit of the cluster, and the (k11)th digit must be dif-
ferent. ~ii ! For a first order Markov process,Pk is given by
r11
k21r105r00

k21r01. In both casesPk is exponential, and the
tail of the probability distribution functionP(v) decays
faster than a power law@11#.

Second, we investigate a more general situation withnon-
exponentialcluster-size distributionPk . Suppose that lnPk
can be written in the form of a Taylor expansion,

lnPk'A01A1k1
A2

2
k21

A3

6
k31•••. ~4!

We will show that the quadratic term of the expansion above
~for A2.0) can yield a power-law tail inP(v). We make
the following ansatz, consistent with 1!m,n and
uA0u!uA1nu @17#:

lnPk5Ak1Bk2, ~5!

where A is determined by the normalization condition
(k51
n Pk51. Substituting this into Eq.~3! yields

lnv5An1B(
i51

m

l i
2 , ~6!

where we used the fact that( i51
m l j5n.

Under these assumptions the relation between the fre-
quencies of two wordsX andX8 is independent of the pa-
rameters describing the functional form ofPk : vX.vX8
holds if ( i51

m l i
2.( i51

m8 l 8 i
2 and these latter quantities are

determined by the structure of the words~the number and
length of the clusters they contain! only. Since— by defini-
tion — the rank of the wordX is given by the total number
of such wordsX8 for which vX,vX8, we can see that the
rankR of a given word is independent ofA andB.

The above argument leads to the result thatif the Zipf plot
is indeed a power law, then the exponentz must be propor-

tional toB. To see this, let us consider the Zipf plots of two
sequences displaying different cluster size distribution char-
acterized byA,B and Ã,B̃, respectively. The rankR of a
given word is the same in both cases according to the argu-
ment above, but the frequencies are different. Let us denote
by v(R) and ṽ(R) the frequency of the given word in the
two sequences. These values are determined by Eq.~6!.
Eliminating( i51

m l i
2 from the equations we have

lnṽ~R!5
B̃

B
lnv~R!1const ~7!

for anyR. Substitutingv;Rz andṽ;Rz̃ into Eq.~7! yields

z;B. ~8!

Now we will focus on the emergence of the power law
~1!. According to Eq.~6!, the power law inP (v) is equiva-
lent to an exponential decay in the density distribution
P (( i51

m l i
2) considering all possiblen-tuples. This is already

a ‘‘universal’’ number theoretical property and can be calcu-
lated for each value ofn. According to the numerical evalu-
ationsP (( i51

m l i
2) decays as exp(2(i51

m l i
2/n), see Fig. 1. In

FIG. 1. ~a! Numerically calculated Zipf plots based on thean-
satz~5! for three different word lengthsn515,13,10~from top to
bottom!. For a givenn-tuple of digits@0,1#, we plotted the depen-
dence on rankR of the quantity( i51

m l i
2 ~which is essentially lnv,

neglecting a normalizing factor that would only shift the entire
curve parallel to the vertical axis.! ~b! The numerically calculated
probability density functionr(x) of the logarithmic word frequen-
cies forn510 ~upper curve!, wherex[ lnv. Note the exponential
decay, as indicated by the linearity of the top curve. We also display
the corresponding distributions of them-cluster words, for
m53,4,5,6 ~from right to left!, showing that a characteristic fre-
quencyx̃m and a probability densityr̃m can be assigned for each
value ofm. More details are in the Appendix.
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the Appendix we also give an approximate derivation of this
behavior. Since, apart from multiplicative factors,
P(( i51

m l i
2) is the density distribution of the logarithm of the

word frequencies in a sequence characterized withB51, this
result means that forB51 we havez5n. Taking ~8! into
account gives

z5nB. ~9!

Figure 1~a! shows Zipf plots calculated numerically with the
ansatz~5! for B51 and variousn. Indeed, the scaling re-
gime extends for increasingn, and the exponentz is in good
agreement with~9!. The corresponding logarithmic probabil-
ity densities are plotted in Fig. 1~b! for n510.

We tested the above explanation of the origin of the
power-law Zipf plots~Fig. 2! on all the test sequences stud-
ied in Ref. @11#, which were generated by three different
methods: inverse Fourier transformation~IFT! @18–21#,
Lévy walks @22#, and the expansion-modification system
@23#.

Typical cluster-size distribution functions for variousa
parameters of the IFT sequences are displayed in Fig. 3. Note
that when the long-range order disappears~for the value

0.5 of the long-range correlation exponenta), Pk decays
exponentially. In all other cases the decay is slower than
exponential, but not a power law in general. The coefficient
B of the quadratic term in~5! can be fit by a linear regression
of (lnPk)/k vs k ~Fig. 4!, for 0,k,N. For all the sequences
investigated, a close relationship was found betweenB and
z ~Fig. 5!, which is quite close to~9! predicted by our simple
arguments. This result indicates that in all cases we studied
the nonexponential cluster-size distribution gives the domi-
nant contribution to the power-law behavior of the Zipf plot.

The approach presented above is limited to cases where
the correlations between the consecutive clusters are negli-
gible. However, in the case of alphabets consisting of many
symbols the Zipf plot can be influenced by the correlations
among the various clusters. These effects can be treated by a
generalization of Eq.~3!: First ~or higher! order conditional
probabilities can be introduced giving the probabilityPkl of
the event that a cluster of lengthl follows a cluster of length
k as Pkl[PkPl(11ekl), where ekl satisfies( leklPl50.
Now, ~3! can be written as

FIG. 2. Measured Zipf plots of long-range correlated sequences
of lengthN5107 generated by the IFT method, for four values of
the autocorrelation exponent:a50.8, 0.7, 0.6, and 0.5~from top to
bottom!. All the sequences studied consisted of 107 digits. The
small nonzero slope of thea50.5 curve is an artifact caused by the
finite sample size.

FIG. 3. Log-linear plot of the measured cluster-size distribution
functions of the IFT sequences fora50.5, 0.6, 0.7, 0.8, and 0.9
~from left to right!. Pk denotes the probability that a randomly
selected cluster consists ofk digits. Fora50.5 the distribution is
exponential, consistent with the Markovian nature~absence of long-
range correlations! of the sequence.

FIG. 4. The coefficientB in ansatz~5! can be fit by a linear
regression of lnPk /k over a range 0,k,n. The curves are calcu-
lated from the cluster-size distribution functions shown in Fig. 3. In
the case of a Markovian sequence~lower curve,a50.5), B van-
ishes.

FIG. 5. The Zipf exponentz vs the quadratic coefficientB,
which was calculated from the cluster-size calculations for the three
methods, IFT (h), Lévy (L), and expansion-modification system
~EMS! (1). Note that the universal behaviorz'nB is supported
by these calculations. For low values ofz, the effects due to the
finite size of the sequence dominate the Zipf analysis. In the case of
the EMS sequences, the power-law behavior of the Zipf plots is less
good, yielding large~up to60.1, depending on the fitting regime!
uncertainties inz ~see Ref.@8# for more details!. In the other two
cases, the error inz is in the order of60.05.

53 6373POSSIBLE ORIGIN OF POWER-LAW BEHAVIOR INn-TUPLE . . .



lnv5(
i51

m

lnPl i1 (
i51

m21

ln~11e l i l i11
!. ~10!

In the m@1 and e!1 limits ( i ln(11el i l i11
)

'( ie l i l i11
'm(klPklekl . Taking into account the defini-

tion of ekl , (klPklekl5(klPkPlekl
2 . Thus the second correc-

tion term in Eq.~10! is of the order ofme2P2, wheree and
P denote the typical magnitude ofekl andPk . This means
that the simple approximation~3! neglecting the correlations
should give satisfactory results even for nonvanishing corre-
lations if ue2P2u!u lnPu.

In summary, for a broad class of texts that can be consid-
ered as built up by consecutive clusters of identical digits,
the Zipf plot can be explained by Eq.~6!. This result also
sheds light on the connection between the Zipf plot and the
non-Markovian nature of the text: as the long-range correla-
tions becomes dominant, the probability of the appearance of
long clusters is increasing. As a consequence, the tail of the
cluster size distribution function will decay slower than the
exponential predicted by the Markovian approximation, and
this nonexponential tail yields the observed ‘‘scaling’’ in the
Zipf plot.

We have benefited from the discussions with S. V. Bul-
dyrev, S. Havlin, and R. N. Mantegna. This work was sup-
ported by the U.S.-Hungarian Joint Fund Contract No. 352.

APPENDIX: DISCUSSION OF EQ. „9…

In this Appendix, we present the discussion of the relation
z5nB, which was obtained in the text by numerical evalu-
ation of the distribution ofx[( i51

m l i
2 for all possible

n-tuples. We analyze the probability density functionr(x),
which is strongly related toP(v), since apart from an addi-
tive constant,x is identical with lnv. r(x) is built up as a
sum of density distributions of variousm-cluster words as

r~x!5 (
m51

n

rm~x!, ~A1!

whererm(x)dx is given by the number ofm-cluster words
satisfying( i51

m l i
2P@x,x1dx# divided by the total number

of words.
Assume that we can ‘‘parametrize’’r(x) by m: for most

values ofx a specificm* can be selected so that the domi-

nant contribution tor(x) is given by them* -cluster words.
In other words this means that for eachm* we can assign a
characteristic value of x̃m* and a characteristic
densityr̃m* . Hence we expect

r~ x̃m* !'r̃m* . ~A2!

A simple estimation for these characteristic values can be the
following: let r̃m* be proportional to the number of
m* -cluster wordsNm* , and let the characteristic frequency
be proportional tovmax(m* ), which is the frequency of the
most frequentm* -cluster word.

The latter quantity,vmax(m* ), can be calculated as fol-
lows. Increasing the lengthl i of the longest cluster in an
m-cluster word at the expense of a smaller cluster with
lengthl j in such a way that the number of clusters does not
change~e.g., 0001100→0000100) yields a more frequently
occurring word, since according to~6! v(l 1 , . . . ,l i ,
l j , . . . ,l m),v(l 1 , . . . ,l i11,l j21, . . . ,l m), if l j<l i .
Thus v ~hence x) is maximal if one of the clusters is
(n2m21) digits long and all the other clusters consist of a
single digit, because in this case the step described above
cannot be performed. Hence

xmax5An1B@m*211~n2m*11!2#'An1B~n2m* !2.

~A3!

Now Nm* is given by simple combinatorics~we must
placem*21 separators inton21 possible positions!

lnNm*5 lnS n21
m*21D'nln

n

n2m*
1m* ln

n2m*

m*

52n@m lnm1~12m!ln~12m!#, ~A4!

wherem[m* /n. For moderate values ofm (m'1/4), the
above equation can be approximated by

lnNm*5n@ ln222~m21/2!2#. ~A5!

Linearizing both Eqs.~13! and ~15! in m and substituting
into ~A2! yields

lnr~2mBn21const!'const22nm, ~A6!

resulting in Eq.~9!.
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6374 53ANDRÁS CZIRÓK, H. EUGENE STANLEY, AND TAMÁS VICSEK
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