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Possible origin of power-law behavior inn-tuple Zipf analysis
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In n-tuple Zipf analysis, “words” are defined as strings ofdigits, and their normalized frequency of
occurrencew is measured for a given “text'{sequence of digijs In the case of various non-Markovian
sequences, the probability density of the frequenéies) has a power-law tail. Here we argue that a broad
class of unbiased binary texts exhibitingnanexponentialdistribution of cluster sizes can indeed yield a
power-law behavior of?(w), where we define clusters to be strings of identical digits. We support this result
by numerical studies of long-range correlated sequences generated by three different methods that result in
nonexponential cluster-size distribution: inverse Fourier transformatiomy healks, and the expansion-
modification system. Our calculations shed light on the possible connection between the Zipf plot and the
non-Markovian nature of the text: as the long-range correlations become dominant, the probability of the
appearance of long clusters is increased, leading to the observed ‘“scaling” in the Zipf[Pidi63-
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Recently Zipf and related-gram entropy analysigl—3]  occur with the same frequency, &(R) is constant and
have been applied to various complex signals or “texts”vanishes. However, in many cases of interest a power-law
[4-10]. This kind of measurement was originally introduced Zipf plot (sometimes called a “linguistic featuref’1,5]) is
in the context of natural languages and is performed by calebserved. So far, the exact origin of this “scaling” behavior
culating the normalized frequency of occurreneeof each  has been puzzling, although there have been indications that
word in a given text. By sorting the words according to theirit can be related to the presence of long-range correlations in
frequency, a rankR can be assigned to each word, with the texts[11]. On the other hand, the power-law Zipf plot
R=1 being the most frequenR=2 the second most fre- cannot beequivalentto the presence of long-range correla-
guent, and so on. tions, as mixing the order of the nonoverlappinguples
For natural languages the(R) function can be well ap- eliminates the correlations on length scales larger thant
proximated by a power law with an exponéntlose to one: does not change the frequencies of these nonoverlapping
words. According to numerical tests, this mixing procedure
o~R7%. (1)  also does not altet if we count the words by shifting the
) ) ) ) window by single digits, as we defined above.
The Zipf functionw(R) is closely related to a quantity that  1¢ interpret results obtained by Zipf and other related
does not require the concept of ranking, the probability densgatistical methods such asgram entropy, the general dif-
sity of the word frequencie®(«w), whereP(w)dw iS pro- ficulty is that we must take into account complex features of
portional to the number of words occurring with a frequencythe text such as long-range correlatigag]. Thus the basic
in the intervall w,w+dw]. For a given frequency, the  approaches that characterize the sequence by either symbol
rank R can be calculated as the total number of words ocfrequencies or first order Markovian probabilitieg, (denot-

curring more frequently tham: ing the conditional probability that a digjt follows a digit
. X) are often not sufficient. One possibility to better capture
R(w)~ f Plw')do'. 2) thg _cpmplexity is to work with hig_her order cqnditional prqp—
® abilities, but they are rather difficult to obtain both empiri-

cally and theoretically13].
Thus the observation of power-law Zipf plot is equivalentto  Here we introduce aimpleralternative. Suppose that the
the presence of a power-law tail A w) [11]. alphabet(set of symbols in the sequenceonsists of only
If—unlike in the case of natural languages—the basiawo elements. Then the text can be considered as built up by
units are not defined, it is of interest to modify the Zipf consecutiveslustersof zeros and ones, where the clusters are
analysis by defining a “word” to be an-digit string of the  defined as identical consecutive didift]. An unbiasedse-
text. To carry out this "i-tuple Zipf” analysis, a window of quence can be characterized by a single cluster-size distribu-
length n is moved along the sequence, one character at #on function P,, where P, denotes the probability that a
step, and we record the occurrence of eaetuple. In the randomly selected clustéconsisting of either type of sym-
case of long, unbiased sequences where each symbol is &ol) consists ofk digits (Z,~oPx=1). In the more general
independent random variable, eaokuple is expected to case of a biased sequence, for each kind of digit a different
distribution function can be assigned, which complicates the
calculations but does not change our conclusidhs.con-
*Electronic address: czirok@hercules.elte.hu tains considerably more information than tpg, and po
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conditional probabilitieg15], but as we do not take into
account the correlations among different clusters, still does 125
not have the “full” characterization of the sequence. Here
. . . ; 100

we point out that in many cases the Zipf plot is strongly 02
related toPy: for a broad class of texts the nonexponential el
distribution of the cluster sizes can account for the observed
power laww(R). 501

The cluster-size distribution functio®, enables us to es-
timate the frequency of a givenn-tuple consisting ofm 257
clusters (n-cluster word with lengths /1,75, .../ m 10 01000 10000

(M ,/;=n). Since we assume independence of the clusters,
the probability of the event that a cluster of lengtfollows

a cluster of lengttk is given byP;P,. Thus for largen and

m the frequency of a givem-cluster word is estimated by

m

Inw=21 P, , 3

where we neglected boundary effects: the actual length of the

first and last cluster can be longer thdp and/,,, respec-

tively [16]. Co Ly =
First, we consider two casef) If the digits of an unbi- 20 40 60 80

ased sequence are independent random variables, then T
P=1/2 as all the lask—1 digits must be identical to the
first digit of the cluster, and thek{1)th digit must be dif- FIG. 1. (@) Numerically calculated Zipf plots based on the-

ferent. (i) For a first order Markov proces®, is given by  satz(5) for three different word lengtha=15,13,10(from top to
p'ﬂ 1p10= P(I;c; 1p01_ In both case®, is exponential and the bottom). For a givenn-tuple of digits[Q,l], we plotted the depen-
tail of the probability distribution functioP(w) decays dence on rank of the quantity={’,/ (which is essentially m,
faster than a power lapdl1]. neglecting a normallzmg factor that would on!y shift the entire
Second, we investigate a more general situation wath- curve parallel to the vertical axjs(b) The numerically calculated

exponentialcluster-size distributiorP,. Suppose that B, p.rOb?b'“txcljgn(s'ty funcuogg(XLOf thillogan’\fh?mihword frequf.n'l
can be written in the form of a Taylor expansion, cies forn= 2. (Upper curve, wherex==new. INote the exponentia
decay, as indicated by the linearity of the top curve. We also display

A, A, the corresponding distributions of then-cluster words, for
INP~Ag+Ak+ 7k2+ €k3+ el (4)  m=3,4,56(from right to lefy, showing that a characteristic fre-
quencyX,, and a probability density, can be assigned for each

We will show that the quadratic term of the expansion abovevalue ofm. More details are in the Appendix.

(for A,>0) can yield a power-law tail iP(w). We make
the following ansatz, consistent with <Ilm<n and
|Aol<|Aqn| [17]:

tional toB. To see this, let us consider the Zipf plots of two
sequences displaying different cluster size distribution char-
acterized byA,B and A,B, respectively. The raniR of a

InP,=Ak+BK?, (5) given word is the same in both cases according to the argu-

ment above, but the frequencies are different. Let us denote

where A is determined by the normalization condition by w(R) and@(R) the frequency of the given word in the
>r_,Py=1. Substituting this into Eq(3) yields two sequences. These values are determined by(&q.
Eliminating =",/ from the equations we have

m
Ino=An+B>, /2, (6) B
=1 In@(R) = 5Inw(R) + const @)
where we used the fact thaf™ ,/;=n.

Under these assumptions the relation between the freg, anyR. Substitutingo~ R¢ ands~R¢ into Eq.(7) yields
guencies of two wordX and X’ is independent of the pa-

rameters describing the functional form & : wy> wyx/ {~B. (8)
holds if E{“:l/i2>2{“:'1/’i2 and these latter quantities are _
determined by the structure of the worttee number and Now we will focus on the emergence of the power law

length of the clusters they contaionly. Since— by defini-  (1). According to Eq.(6), the power law i) is equiva-
tion — the rank of the worcK is given by the total number lent to an exponential decay in the density distribution
of such wordsX’ for which wy<wy:, we can see that the .‘7)(2{":1/’?) considering all possibla-tuples. This is already
rank R of a given word is independent &f andB. a “universal” number theoretical property and can be calcu-

The above argument leads to the result thte Zipf plot  lated for each value ai. According to the numerical evalu-
is indeed a power law, then the exponénnust be propor- ationsA=" ,/?) decays as exp(=",/?/n), see Fig. 1. In
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FIG. 2. Mea7sured Zipf plots of long-range correlated sequences [, 4. The coefficienB in ansatz(5) can be fit by a linear
of lengthN= 10_ generated by the IFT method, for four values of regression of IR, /k over a range &k<n. The curves are calcu-
the autocorrelation exponent=0.8, 0.7, 0.6, and 0.Brom top to  |ated from the cluster-size distribution functions shown in Fig. 3. In

bottom). All the sequences studied consisted of Higits. The  the case of a Markovian sequengewer curve,a=0.5), B van-
small nonzero slope of the=0.5 curve is an artifact caused by the jghes.

finite sample size.
0.5 of the long-range correlation exponemf, P, decays
the Appendix we also give an approximate derivation of thisexponentially. In all other cases the decay is slower than
behavior. Since, apart from multiplicative factors, exponential, but not a power law in general. The coefficient
P(ZL,/7) is the density distribution of the logarithm of the B of the quadratic term i5) can be fit by a linear regression
word frequencies in a sequence characterized B, this  of (InPY/k vsk (Fig. 4), for 0<k<N. For all the sequences
result means that foB=1 we have/=n. Taking (8) into investigated, a close relationship was found betwBesnd
account gives ¢ (Fig. 5), which is quite close t@9) predicted by our simple
arguments. This result indicates that in all cases we studied
{=nB. 9 the nonexponential cluster-size distribution gives the domi-
nant contribution to the power-law behavior of the Zipf plot.
Figure 1a) shows Zipf plots calculated numerically with the  The approach presented above is limited to cases where
ansatz(5) for B=1 and variousn. Indeed, the scaling re- the correlations between the consecutive clusters are negli-
gime extends for increasing and the exponentis in good  gible. However, in the case of alphabets consisting of many
agreement witf(9). The corresponding logarithmic probabil- symbols the Zipf plot can be influenced by the correlations
ity densities are plotted in Fig.(i) for n=10. among the various clusters. These effects can be treated by a
We tested the above explanation of the origin of thegeneralization of Eq(3): First (or highey order conditional
power-law Zipf plots(Fig. 2) on all the test sequences stud- probabilities can be introduced giving the probabily, of
ied in Ref.[11], which were generated by three different the event that a cluster of lengttollows a cluster of length
methods: inverse Fourier transformatidiT) [18-21, Kk as P,=P,P,(1+¢,), where ¢, satisfies S, e, P,=0.
Levy walks [22], and the expansion-modification system Now, (3) can be written as

[23].

Typical cluster-size distribution functions for various 2.0 . —
parameters of the IFT sequences are displayed in Fig. 3. Note L
that when the long-range order disappeéim the value 1.5} ]
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FIG. 5. The Zipf exponent vs the quadratic coefficierns,

1 50 100 which was calculated from the cluster-size calculations for the three
k methods, IFT ), Lévy (<), and expansion-modification system

(EMS) (+). Note that the universal behavigrnB is supported
FIG. 3. Log-linear plot of the measured cluster-size distributionby these calculations. For low values &f the effects due to the
functions of the IFT sequences far=0.5, 0.6, 0.7, 0.8, and 0.9 finite size of the sequence dominate the Zipf analysis. In the case of
(from left to righy. P, denotes the probability that a randomly the EMS sequences, the power-law behavior of the Zipf plots is less
selected cluster consists kfdigits. For «=0.5 the distribution is  good, yielding larggup to =0.1, depending on the fitting regime
exponential, consistent with the Markovian nat(absence of long-  uncertainties iy (see Ref[8] for more details In the other two
range correlationsof the sequence. cases, the error iff is in the order of=0.05.
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m m-1 nant contribution tgp(x) is given by them* -cluster words.
Inw=2 InP/i+ 2 In(1+ E/i/i+1)' (10 In other words this means that for eagtf we can assign a
=1 =1 characteristic value of X,» and a characteristic

In the m>1 and e<l limits ZIn(l1+e , ) density py. Hence we expect

i7i+1
~3Zi€/ s, ~MI P . Taking into account the defini- (K ) =~ Proye (A2)
tion of €, Ek|Pk,ek|=Ek,PkP|eﬁ| . Thus the second correc-
tion term in Eq.(10) is of the order oime?P?, wheree and A simple estimation for these characteristic values can be the
P denote the typical magnitude ef, and P,. This means following: let p,« be proportional to the number of
that the simple approximatiof) neglecting the correlations m*-cluster wordsN», and let the characteristic frequency
should give satisfactory results even for nonvanishing correbe proportional taw,{(m*), which is the frequency of the
lations if | €2P?|<|InP). most frequentm* -cluster word.

In summary, for a broad class of texts that can be consid- The latter quantityw,o{m*), can be calculated as fol-
ered as built up by consecutive clusters of identical digitsJows. Increasing the lengtlf; of the longest cluster in an
the Zipf plot can be explained by E¢6). This result also m-cluster word at the expense of a smaller cluster with
sheds light on the connection between the Zipf plot and théength/; in such a way that the number of clusters does not
non-Markovian nature of the text: as the long-range correlachange(e.g., 0001108-0000100) yields a more frequently
tions becomes dominant, the probability of the appearance afccurring word, since according t66) w(/1,....,
long clusters is increasing. As a consequence, the tail of the, ... /) <o(/y,.../i+1/-1,... /), it /</.
cluster size distribution function will decay slower than theThus » (hencex) is maximal if one of the clusters is
exponential predicted by the Markovian approximation, andn—m-—1) digits long and all the other clusters consist of a
this nonexponential tail yields the observed “scaling” in the single digit, because in this case the step described above
Zipf plot. cannot be performed. Hence

We have benefited from the discussions with S. V. Bul-

_ * _ Ak 27~ _ m*\2
dyrev, S. Havlin, and R. N. Mantegna. This work was sup- Xma= AN BLM™ =1+ (n=m*+1)"]~An+B(n—m")".

ported by the U.S.-Hungarian Joint Fund Contract No. 352. (A3)
Now N, is given by simple combinatoricéve must
APPENDIX: DISCUSSION OF EQ. (9) placem* —1 separators inta—1 possible positions
In this Appendix, we present the discussion of the relation _ n n—m*
¢{=nB, which was obtained in the text by numerical evalu- NN« =In : ~nln +m*In
i atrihh —_ym 2 ; m m*—1 n—m* m*
ation of the distribution ofx=%L,/7 for all possible
n-tuples. We analyze the probability density functioefx), = —n[pIng+(1— w)In(1—w)] (A4)

which is strongly related t®(w), since apart from an addi-

tive constantx is identical with Inw. p(x) is built up as a where u=m*/n. For moderate values i (u~1/4), the
sum of density distributions of various-cluster words as  ;pve equation can be approximated by ’

,D(X): é Pm(X), (Al) |nNm*:n[|n2_2(,LL_1/2)2]. (AS)
m=1

Linearizing both Egs(13) and (15) in w and substituting
wherep(X)dx is given by the number of-cluster words into (A2) yields
satisfying=™ ,/?e[x,x+dx] divided by the total number
of words. Inp(2.Bn?+ consy~const-2nu, (AB)
Assume that we can “parametrizgd(x) by m: for most
values ofx a specificm* can be selected so that the domi- resulting in Eq.(9).
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